Deep Learning on the
Sphere

William Yik



https://github.com/yikwill/mljc-spherical-ml-workshop



Why do we need special consideration
for the sphere?



Deep learning for computer vision

Decades of research has optimized Convolution Nearal Network NN
deep learning methods for image ll

recognition and natural language
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ERAS as an image dataset?

Early attempts at global weather
forecasting with ML treated global
atmospheric data as images

Weather forecasting — next
frame/token prediction




ERAS as an image dataset?

Decreasing grid cell size towards poles

Early attempts at global weather
forecasting with ML treated global
atmospheric data as images

Weather forecasting — next
frame/token prediction

Obvious flaws with 2D representation

Zonal periodicity



Spherical geometry matters!

Methods which don’t account for
spherical geometry

- Have distortions towards the poles
- Exhibit unrealistic behavior
- Are unstable in long rollouts

(c) FNO, non-linear

(d) SFNO, linear



But geometry isn’'t the only thing that matters...
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Deep learning methods for spherical data



0. Traditional Convolutional Neural Networks



Convolutional kernels
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1. Latitude/longitude padding



Padding in traditional convolutional neural networks
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How to pad with spherical data?

Polar neighborhood?

Pad your “images” such that you have

- Periodicity in longitude
- Correct orientation of polar
neighborhoods

Zonal periodicity



Proposed lat/lon padding scheme

"

Schreck, J., Sha, Y., Chapman, W., Kimpara, D., Berner, J., McGinnis, S., ... & Gagne Il, D. J. (2024).
Community Research Earth Digital Intelligence Twin (CREDIT). arXiv preprint arXiv:2411.07814.



Let’'s implement it!



2. Grid discretization



ERAS’s grid

F80 Gaussian grid 080 octahedral reduced Gaussian grid




HEALPIx grid

Hierarchical Equal Area isoLatitude
Pixelation

- Subdivisions of 12 diamonds

- All grid cells have equal area

- Grid cells distributed on lines of
constant latitude




Equal area grid

48-ring FullGaussianGrid
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Using HEALPix for CNNs

Treat each of the 12 faces as a distinct image, pad using neighboring faces




Let’'s implement it!



Local Spherical CNNs
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Spherical Convolutions

Klul@) = [ s y)- ul)dy
P ML |
Convolution of u ! \

and k evaluated Sum over all points Product of kernel
at x on the plane and data

(kxu)(z) = / k(Rn) - u(R_‘:I:I)dR
- ReSO(3) -
Convolution of u \ \

and k evaluated Sum over all points Product of kernel
at x on the sphere and data




Spherical Convolutions

(b) local convolution filter

(kxu)(z) = / k(Rn) - u(R_‘:I:I)dR
- ReSO(3) -
Convolution of u \ \

and k evaluated Sum over all points Product of kernel
at x on the sphere and data




Accounting for spherical geometry with quadrature weights
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Accounting for spherical geometry with quadrature weights

(a) Euclidean (b) naive spherical (c) weighted spherical



Defining our spherical kernel
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Let's visualize it!



Global Spherical CNNs



Spherical Convolutions

Klul@) = [ s y)- ul)dy
P ML |
Convolution of u ! \

and k evaluated Sum over all points Product of kernel
at x on the plane and data

(kxu)(z) = / k(Rn) - u(R_‘:I:I)dR
- ReSO(3) -
Convolution of u \ \

and k evaluated Sum over all points Product of kernel
at x on the sphere and data




The Convolution Theorem

/'

Convolution of u
and k evaluated
at x
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SHT = spherical harmonic transform
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Fourier harmonics
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The Convolution Theorem

k*xu)(z Ro)|- w(R'z)dR
o
Convolutlon of u \

and k evaluated Sum over all points Product of kernel
at x on the sphere and data
-------------------------------------------------------- Equivalent---------------oroo

SHT = spherical harmonic transform
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The Convolution Theorem

(kxu)(x) = / k(Rn)|- w(R'z)dR
J RESO(3)
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CNN learns a kernel in the spatial domain

C transform

SFNO learns a kernel in the spherical harmonics domain
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Original spherical New spherical harmonic
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