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Why do we need special consideration 
for the sphere?



Deep learning for computer vision

Decades of research has optimized 
deep learning methods for image 
recognition and natural language 
processing



ERA5 as an image dataset?

Early attempts at global weather 
forecasting with ML treated global 
atmospheric data as images

Weather forecasting → next 
frame/token prediction



ERA5 as an image dataset?

Early attempts at global weather 
forecasting with ML treated global 
atmospheric data as images

Weather forecasting → next 
frame/token prediction

Obvious flaws with 2D representation

Zonal periodicity

Decreasing grid cell size towards poles



Spherical geometry matters!

Methods which don’t account for 
spherical geometry

- Have distortions towards the poles
- Exhibit unrealistic behavior
- Are unstable in long rollouts



But geometry isn’t the only thing that matters…



Deep learning methods for spherical data



0. Traditional Convolutional Neural Networks



Convolutional kernels

Data Kernel
CNNs learn this

Convolution 
of U and K

U K U * K



1. Latitude/longitude padding



Padding in traditional convolutional neural networks



How to pad with spherical data?

Pad your “images” such that you have

- Periodicity in longitude
- Correct orientation of polar 

neighborhoods

Zonal periodicity

Polar neighborhood?



Proposed lat/lon padding scheme

Schreck, J., Sha, Y., Chapman, W., Kimpara, D., Berner, J., McGinnis, S., ... & Gagne II, D. J. (2024). 
Community Research Earth Digital Intelligence Twin (CREDIT). arXiv preprint arXiv:2411.07814.



Let’s implement it!



2. Grid discretization



ERA5’s grid

F80 Gaussian grid O80 octahedral reduced Gaussian grid



HEALPix grid

Hierarchical Equal Area isoLatitude 
Pixelation

- Subdivisions of 12 diamonds
- All grid cells have equal area
- Grid cells distributed on lines of 

constant latitude



Equal area grid



Using HEALPix for CNNs

Treat each of the 12 faces as a distinct image, pad using neighboring faces



Let’s implement it!



Local Spherical CNNs



Data Kernel
CNNs learn this

Convolution of u and k
u k u * k

Convolution of u 
and k evaluated 
at x

Product of kernel 
and data

Sum over all points 
on the plane



Convolution of u 
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and data
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Spherical Convolutions

Convolution of u 
and k evaluated 
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Product of kernel 
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Sum over all points 
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Convolution of u 
and k evaluated 
at x

Product of kernel 
and data

Sum over all points 
on the sphere

Spherical Convolutions



Accounting for spherical geometry with quadrature weights

Convolution of u 
and k evaluated 
at x

Product of kernel 
and data

Sum over all points 
on the sphere

Quadrature weights



Accounting for spherical geometry with quadrature weights



Defining our spherical kernel



Let’s visualize it!



Global Spherical CNNs



Convolution of u 
and k evaluated 
at x

Product of kernel 
and data

Sum over all points 
on the sphere

Spherical Convolutions

Convolution of u 
and k evaluated 
at x

Product of kernel 
and data

Sum over all points 
on the plane



The Convolution Theorem

Convolution of u 
and k evaluated 
at x

Product of kernel 
and data

Sum over all points 
on the sphere

SHT of the convolution of 
u and k

SHT = spherical harmonic transform

Product of SHT(data) and 
SHT(kernel)

Equivalent



Fourier harmonics Spherical harmonics



SHT transforms data into a 
linear combination of spherical 
harmonics



The Convolution Theorem

Convolution of u 
and k evaluated 
at x

Product of kernel 
and data

Sum over all points 
on the sphere

SHT of the convolution of 
u and k

SHT = spherical harmonic transform

Product of SHT(data) and 
SHT(kernel)

Equivalent



The Convolution Theorem

Convolution of u 
and k evaluated 
at x

Product of kernel 
and data

Sum over all points 
on the sphere

SHT of the convolution of 
u and k

SHT = spherical harmonic transform

Product of SHT(data) and 
SHT(kernel)

Equivalent

CNN learns a kernel in the spatial domain

SFNO learns a kernel in the spherical harmonics domain 
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